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ABSTRACT

This paper describes a line switching communication network where,

as the network becomes congested, additional lines are opened to relieve

congestion. We assume that a fixed charge is paid for each line opening

or closing operation; a cost is paid per unit time for each line in

use; a cost is paid per unit time for packet storage in a packet queue;

and reward is earned for each packet transmission completed.

Under assumptions concerning Poisson arrival and service, a Markov

model can be formulated which determines the average earning rate for

the network under a specific policy. The policy is the control

algorithm which specifies when lines should be opened or closed. The

solution technique involves replacing an infinite subset of the state

space by a finite set of states with equivalent behavior. A traditional

technique called policy iteration can then be applied to the reduced

finite model. The algorithm solves for the optimal policy, i.e. the

policy yielding the highest earning rate.

The paper illustrates how optimal policies for the finite

optimization problem are also exactly correct for the original infinite

problem. While the work describes how a line switching network can be

modelled and optimal control strategies determined; it also illustrates

a modelling technique which can be applied to other optimization

problems having an infinite state space.
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LINK CAPACITY CONTROL

IN A

COMPUTER COMMUNICATION NETWORK

1. I

Much of the work in the computer communication network area is

concerned with networks operating with fixed capacity links between

nodes. Typically the emphasis is on determining a fixed link capacity

for each link within the network. Much of the results in the area are

based on work by Kleinrock (1]. There are several capacity assignment

algorithms and they are given in [2]. However, for networks with widely

varying traffic loads, it may be beneficial to design a system where the

link capacity is variable. This might be realistic for a network using

multiple dial-up telephone lines where the link capacity can be

increased by using another telephone line. In this paper, we will study

the problem of dynamically controlling the link capacity between two

,odes in a computer communication network. For a general network it is

simple to apply the algorithm link by link throughout the network. The

problem is treated using a Markov modeling technique where decision

theory produces a optimal set of controls or policies yielding maximum

average reward per unit time.

In section 2 we will define a Markov model describing the state of

the link between the two nodes. This will be an infinite state space

model which is difficult to solve using traditional analytic techniques.

For that reason, in section 3 we will show a method of reducing the

state space cardinality to that of a finite model. To do this we will

note that at some point in time the packet queue is so heavily loaded

I"0
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that any optimal policy will open all available lines. In section 4 we

analyze this policy so that in section 5 we can show that this policy of

opening all lines is indeed optimal when the packet queue is heavily

loaded. Once the state space has been reduced, section 6 gives a brief

description of the algorithm for determining the optimal policy for line

management. Section 7 gives an example of the use of the algorithm and

section 8 contains a summary and conclusions.

2. Model Description

Two nodes in a communication network communicate through an

integral number of unidirectional lines each having fixed capacity,

costing a fixed charge per unit time, and a fixed amount for each line

opening or closing operation. In the two node network shown in figure

1, note that a queue of packets await transmission across the link from

node Ni to node N2. The link between nodes represents an integral

number of lines of equal bandwidth where, the number of lines is

determined as a function of queue length at node NI. Thus information

available at the source node is used to control the opening and closing

of L unidirectional identical lines connecting node Ni to node N2.

The inter-departure times of packets served at each line are

assumed exponentially distributed with parameter u . The inter-arrival

times of packets are also exponentially distributed but with parameter

S. Consider a collection of i open lines each serving packets at rate

The parallel collection of i open lines can be replaced by an

equivalent single line with exponential inter-departure rate i" i. This
7-

holds while there are at least as many packets as lines. When the

I..
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number of packets in the queue, j is less than the number of lines, then

only j packets reside at a line server and the effective rate is j.1.

Thus, if i represents the number of open lines and j represents the

packet queue length, the effective service rate Sij is specified by:

Si,j=min{i,j} "1 .

2.1 State and Policy

The line control problem described above can be modeled by a Markov

process. Each state within the Markov process specifies the current

number of lines in use, and the current queue length. Hold times and

transition probabilities are determined; and a reward structure is

defined; so that the Markov decision theory treated by Howard in £3]

may be used to maximize the reward per unit time or gain of the process.

The set _U states, (qij1<=i<=L, O<=J} is defined so that at each

state qi,J exactly i lines are open and j packets reside in the queue.

Three possible policies exist at each state, a line may be opened, a

line may be closed, or the line count may remain constant and the packet

arrival/service process will operate. It is assumed that a line opening

or closing operation will occur instantaneously. The policy function,

POL' j {,.,z represents the selected line control policy at qi,J" A

policy function will be chosen which will maximize the reward earned per

unit time in steady state operation.

The choice of policy must be restricted at some states. We define

the range o c RPi'j = {az} is the set of allowed policies at

p e



TABLE 1 Range of Policy

state index RPij

i=I , J>:O {g,.r
1<i<L , J>:O{.,,..

i:L , J>=O{.,..

Note that in line i=I, line closing is disallowed while in line i:L,

line opening is disallowed. This limits both the maximum and the

minimum number of lines which are active at any moment in time.

2.2 Holding Times

The average time spent within a state under a given policy is
defined to be the b= 11M HT . Under the assumptions of Poisson

arrival and service, hold times can be computed from the process

parameters as follows:

TABLE 2 Hold Time for a e RPi

policy I HT,,
i~j

fZZI 1/(Sij4.X

of=9 or =.Q

-------- ---------------------------------------------
for 1<:i<:L , 0<:j

- V
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2.3 Reward Structure

The reward structure describes the expected rewards minus the

expected costs at each state within the system. The pertinent

parameters are:

LTC line cost per unit time
PSC packet storage cost per unit time
REW reward per packet for transmission
LOC line opening cost
LCC line closing cost

The reward Ri,j,c at state qi~j assuming the use of policy a e RPi j is

expressed in the following table:

TABLE 3 Reward Function for a e RPi, j

----- --------------------------------------------------------
policy R.1,J,

I (REW.Sj- ivLTC-J.PSC).HTij,

-LOC

-LCC

-----------------------------------------------------------------

2.4 Transition Matrix

The tansition p from state qiJ to state m,n under

policy r is defined by the function Pi,jm,n,O:

w.

I



TABLE 4 Transition Probability for RPi' j

policy state index Pi ,n
-------------------- I------------

mi and n--J+l P- ./( %4Si,j)

=£ mzi and nxmin{O,J-l} P--Si / /C i+ j )

otherwise P=--O

me=i 1 and n=j P=1

otherwise P20

m=i-1, and n=j P-1

otherwise P=O

A state diagram for the line control Markov process is shown in

figure 2.

3. d a Stat e Spaci rdialitt

The transition probability matrix and reward structure describe the

infinite Markov process for the line switching communication network.

The model will be reduced to a finite Markov process by representing

occupancy of an infinite sub-set of states within the process by entry

into a single aggregate state with appropriate mean cost and hold time.

Using this approach, we construct an imbedded finite Markov process

which describes the interesting portion of the policy solution domain.

Let us partition the set of states into two regions called the

imn. region, (q , 1I1 <=i<=Lj<K} and the outer region,

(qi,j'1<=i<=L,J>=K}. The parameter K is a positive integer constant

chosen to designate the beginning of the regular portion of the optimal

policy solution. In the outer region, we will show that the packet
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buffer is so heavily loaded that any optimal policy opens all lines to

reduce future expected costs for maintaining packets in the queue. This

is called the A" lines open policy.

All Lines Open Policy

POLLjr. , J>=K.

I Li,jzo , 1<=i<L , J>=K

The outer region is shown in figure 3; note the use of the all lines

open policy for all J>=K. In the outer region, where the queue is

sufficiently deep (J>=K) the effective service rates, branch

probabilities, and hold times are:

3i=i. - Pi= X/( X +s) hti=1/( X+ si) for 1<=i<=L

Lower case variables have been chosen here to indicate attributes of the

outer region. The constant K must be chosen with K>=L to insure that

that there are enough packets in the queue to keep all L servers busy.

The uppermost row (i=L) of the outer region describes the basic

queueing process which operates when the packet queue is heavily loaded

and the all lines open policy is employed. The set of states

(qL,j I J>-K} forms an infinite Markov chain where the only exit is the

transition from qL,K to a member outside the set, qL,K-1" Then, for all
J>-K, pL is the probability that a state q L,j makes the transition to

qL,J 1 while, 1-pL is the probability of making the transition from qL,j

to qL,J-1' In all future discussions, it will be assumed that L > u

or equivalently, pL<1/2. When pL>%l/ 2 , the Markov process is transient,

* .. *-.w----
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and the packet queue will grow without bound.

Define the earned reward f e(n), n>=O to be the average

cumulative reward earned after entry to state q L,K but before

departure from the uppermost row of the outer region, {qL,jlJ>=K} by

branching to qL,K-1" We can write the following balance equation by

computing the earned reward e(n) at state qL,Kn in terms the earned

reward from its neighbors:

e(n) -RL ,K+nr + (1-L)-e -1 + p'en for n>=0

(1)

e(-1) =0

The initial condition for the balance equation, e(-1 )=0 implies that no

further reward is accumulated after the transition to qL,K-1 which

coincides with departure from the outer region.

The earned reward function can be readily evaluated by exploiting

the symmetry of the uppermost row (i=L) of the outer region. Let H

represent the expected time before the sub-chain, '{qL,j I J>=K} is

exited assuming that the process starts in qL,K" Let E represent the

expected reward accumulated due to additional packet arrivals over the

same interval. Then, the earned reward recurrence, e(n) expresses the

fact that for any n>-O, the sub-chain I+nm{qL,Jn I j>=K} has the same

structure as the sub-chain QK except that an additional n entries must

be maintained in the queue as long as the Markov process remains within

QK+n' The bo=d JIM fn1  g n, h(n) computes the time to exit QK from

any state qL,K+n' hence h(O)=H. These two recurrences are shown below:

I
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e(n)=[a'(K+n) b].H + E + en- 1

and (2)

h(n)=H + hn_ 1 , n=0

Where, the initial conditions are: e(-1)=0 and h(-1)=0.

The parameters a and b are defined:

a=-PSC and b=(REW'sL - L.LTC) so that,

RL,j,r - (a-J + b)'htL for J>=K.

Note that a and b above are the linear term in queue length j and

constant term for the reward earning rate at states in the outer region.

If the system is started in state qKn' the reward recurrence implies

that K+n packets must be maintained for a time H equal to the time the

system remains within the subset of states q L,n+jlj>=K}, E reflects

additional costs from queue entries accumulated because of transitions

to the right, and en-1 represents costs accumulated after entering

qL,K+n-1* Symmetry and the Markov property dictate that H and E are

well defined and independent of index n. The solution to these two

recurrences is shown below:

e(n) = a.[(n(n 1)/2) •H] I (n+1).E + (a.K~b).h(n)

and (3)

h(n) = (n 1)'H for all n>=O

The constants H and E can be determined by substituting the solutions to

the earned reward recurrence, (3) into the earned reward balance

equation, (1) and equating coefficients of n:
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2H a htL/(1..p2L )  and E htL'pLYa/(1- 2*pL)

Using these values for H and E, the solutions for e(n) and h(n) can be

shown to satisfy both the balance equation of (1) and the recurrences

of (2).

The solutions to the earned reward recurrence allow us to express

the infinite line control Markov process by a finite one where in the

uppermost row, an infinite set of states (qL jij>=K} is replaced by a

single aggregate state q' with appropriate mean cost e(O)=E+(K-a+b) HL,K

and mean hold time h(O)=H. The aggregate state q, branches to q

with probability one thereby truncating the state space. The terminal

states of lesser line index q'1 iK' 1<zi<L will be constrained to employ

policy g, a choice which will be shown to be optimal. This finite line

control process is shown in figure 4. When K is chosen sufficiently

large, the finite Markov process terminating at q, 1<-i<-L describesi, K'

an imbedded chain within the Markov chain formed by any optimal policy

for the original infinite process under specific conditions which will

be discussed later.

4. Rlative Values under = A" Lines Q Pl

In (3], Howard describes a procedure for the optimization of Markov

decision processes. The policy optimization procedure involves an

analysis step where, under a given policy, relative value equations are

evaluated by solving a system of linear equations, and a policy

improvement step where relative values from the previous policy are used

to determine a new policy yielding higher average reward per unit time.
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When the average reward per unit time (the gain G) of the system is

identical in two successive policy iteration steps, the iteration has

converged and the associated policy is known to be optimal.

In this section, we will use the earned reward recurrence to

construct the relative values in the outer region. The relative value

equations for the line control Markov decision process appear as

follows:

define a-POLij then,

Vij . G*HTi,j,= Ri'jc + (Pi,j,m,n,O).Vm,n (4)

m,n

for 1<zi<=L , O<=j , 1<=m<=L , O<=n

In equation (4) above, Vii is the relative value for state qi,j, and G

represents the process gain or average reward earned per unit time.

Once the relative values have been determined under a given policy, a

policy enhancement step is performed by maximizing the value oriented

test quantity:

MAX Ri,'J, - G.HTi,j,c + (Pi,J,m,n,)'Vm,n (5)

cYeRPi~j m,n

for 1<zi<:L , O<=j , 1<:m<--L , O<zn

This yields a policy with higher gain at each iteration until an optimal

policy is reached.
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The solutions of (3) for the earned reward and hold time

recurrences may be used to compute relative values for all states within

the uppermost row of the outer region, (qLJ I J>=K}. A multistep

relative value equation shown below will be used to compute the value of

each of these states in terms of the value for state q which will

be given the arbitrary value V. This equation determines qL,Kn'S value

VL,K+n directly in terms of V and the average cost and time required to

reach qL,K-I from any initial state qL,K+n' n>=O.

VL,K n - -G'h(n) + e(n) + V (6)

for O<:n , K fixed and sufficiently large

Here, h(n) represents the average duration of stay within the outer

region assuming the system starts in qL,K+nl e(n) accounts for the cost

paid while within this region, and V represents the relative value of

state q which is reached after departing the outer region.

The relative values for states qi,j of lesser line index (i<L)

under the assumption that POLi j=  , 1<=i<L , J>=k can now be computed

by repeatedly using equation (4) for lines L-I, L-2, ... 1:

Vi,K n  V L,K n - (L-i)'LOC for 1<=i<=L , O<zn (7)

= -G-h(n) + e(n) + V - (L-i).LOC

The relative values of (7) can be shown to satisfy the relative value

equations of (4) where the all lines open policy is employed in the

outer region. Equation (4) has been modified to employ the all lines

open policy over the outer region yielding the equations below:

ft.
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VL,j RL,J,Z - G'htL + (1=..)'V.,J- 1 + (P*)'VL,J l
'  for J>sK

and (8)

¥iJ = RiJ,.2. + i+1,J for I<zi<L, J>zK.

Since the relative values satisfy (8), they must be the correct relative

values of states within the outer region for the line control Markov

process under the all lines open policy.

5.9aOo l Policy S= thf Oor Reon

The motivation for the work above is based on the assumption that

the all lines open policy is optimal for states within the outer region.

Now that solutions for the relative values have been established for

states within the outer region under the all lines open policy, we shall

determine whether these values Indicate that the all lines open policy

is indeed optimal. The conditions under which the optimality criterion

is satisfied will now found by substituting the relative values from (7)

into the test quantity of (5). The all lines open policy is optimal in

the outer region exactly when (5) is maximized by selecting POL1 ,j= and

POLi,j., 1<=-i<L, J>=K.

Let us first consider the set of states within the uppermost row,

{qL,jlj>=K}. It may be quickly shown that in this uppermost row of the

outer region, the policy POLL, j s yields a test quantity which is at

least as high as that of POLL,jzg whenever LOC and LCC are non-negative.

The policy g is not feasible and hence, not a candidate for maximizing

(5). Thus, the policy C maximizes (5) in the uppermost row whenever

line switching costs are non-negative.

I,
*9

- 1:----- ---
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For states of lesser line index, we will first show that the policy

POLij=9 is strictly better than the policy POLi,j=i. Assume that the

test value of (5) forc--o is greater than that for a- i, 1<-i<L, and the

following inequalities result:

(9)

-Ri~ , G-HT i,j,-Q * Vi+1, j  > R i 'j Z - HT i'j,/

+ (P iliii-1,r )'Vi,j. I + (Pi iJ ,)Vi~.

for 1<-i<L , J>=K

or

0 > -Vi+1, j + LOC + (a-j+b).ht i - G-hti+(1-Pi).Vi.j I + (pi )-Vi,j1

After substituting the relative values for the outer region into (9),

all second order terms in j cancel. If PSC is assumed to be positive

and non-zero, the linear coefficient of j is negative and once the test

inequality is satisfied, similar test quantities with higher index j

must also satisfy this inequality. Selecting linear terms in j and

simplifying, we have:

a-p i < a.(H-h i)/(2,H) , 1<--i<L

but, hL < hi

therefore, a.pi < a.(H-hL)/(2"H) -- a-PL

or,

When a=-PSC<0, we have: Pi > PL , 1<=i<L

It can also be shown that POLlij=2 yields higher test quantities than

POLi,j--.,J>-K , 1<i<L. Thus, if Pi > PL' 1<=i<L, then there evists an

index K such that the optimal policy for all qi, K+n' 1<:i<L, n>0= is

I.



19

--o. This follows because linear terms in j within equation (9) must

eventually dominate constant terms for j sufficiently large. We

conclude that whenever the effective service rate increases with number

of lines, the all lines open policy will be optimal for some

sufficiently large index K denoting the beginning of the outer region.

6. Policy Solution over nner Regon

Once the infinite outer region of the state space has been replaced

by the column of states, q'iK the solution of the line control

optimization problem becomes straightforward. Policy iteration

techniques may be used to determine optimal policies for line

management. The policy iteration cycle as described by Howard consists

of first solving the system of equations of (4) along with a ground

state definition equation (we chose V1 ,0 =0) for the relative values and

the gain G, then a higher gain policy is determined using the previous

relative values and the test quantity of (5). The iteration halts when

the same policy is selected twice.

Some difficulties may be encountered because certain policies will

yield a Markov process with multiple recurrent chains complicating the

algebraic solution of the relative value equations which are potentially

singular. This difficulty may be avoided either by using the policy

iteration technique modified to treat polydesmic processes (3], or by

carefully choosing an initial policy (e.g.: all lines open over the

inner region) which defines exactly one recurrent chain within the

uppermost row. Since, any state may experience an arbitrary large
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number of arrivals in a small interval of time, all states have a

non-zero probability of reaching some state qi,j with arbitrarily high

queue length index J. Thus, if the all lines open policy is employed

for all J>=K, all states can reach a single recurrent chain containing

(qL,jIj>=K}. This is a sufficient condition to insure that a policy

forms a monodesmic Markov process. Not only does the initial policy

form a monodesmic process, so do all successive policies searched from

this initial policy in the iteration cycle.

The choice of K is sufficiently large whenever the optimal policy

chosen for q i,K-1 1<:i<=L is identical to that chosen under the all

lines open policy. Thus, whenever the finite policy iteration halts

with an optimal policy where, POLL,K.1 =r, and POL iK.I9, 1<=i<L, this

policy is optimal for the infinite process where of course the all lines

open policy is employed in the outer region. This must be true because

if (9) is satisfied for J=K-1, it will also be satisfied for all J>=K.

When larger than necessary values for K are chosen, states which were

within the outer region for smaller choices of K now lie within the

inner region; however, the resulting policy and relative values for

states within the smaller inner region will match those of corresponding

states within the larger inner region. Hence, any choice of K which is

too large will result in a correct solution.

7. Exml

Figure 5 illustrates an application of this algorithm. The process

parameters used in this example are shown in the table below:
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TABLE 5 Process parameters for example of figure 5

L = 5 LTC = 3.
K = 9 PSC = 3.
X z 2. HEW = 1.
U Z 1. LOC = 2.

LCC = 1.

The optimal policy resulting from use of the policy iteration algorithm

shown within each state. Only transition arcs resulting from the

optimal policy are shown. The parameter K=9 denotes the beginning of

the outer region. Initially, K was chosen larger with identical

results; however, K=9 was selected as the minimum value of K which

still illustrates the optimality of the solution (all lines open for

j-K-1 ). The policy iteration algorithm converged to the optimal policy

from the initial all lines open policy in 7 iterations. Little is known

of the rate of convergence of the policy iteration algorithm. While the

number of possible policies is exponential in the number of states, all

example problems converged very quickly to an optimal policy.

The relative values and gain resulting from the policy iteration

algorithm are shown in figure 6. Note that for this example the gain is

negative indicating that the network runs at a deficit. That is,

rewards for packet transmission cannot pay for costs to mantain lines,

switch lines and store packets; this results from a low choice of the

value for HEW. The relative values indicate the relative merit of

residing within specific network states. The state q1, 0 was chosen as

the ground state and therefore has value zero. All other relative

values happen to be more negative than q 1 0 and are therefore more

costly as initial states from which to resume message transmission.

: . . .. . . .. . . .II II I| i - " :e .. .. pl - : ... ' -I .. .
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Queue Length

Lines 1
Open 5 8

5 -4.00 -8.22 -12.63 -17.14 -21.65 -26.17 -31.68 -38.20 -45.72
4 -3.00 -7.22 -11.63 -16.14 -20.65 -26.39 -33.08 -40.20 -47.72
3 -2.00 -6.22 -10.63 -15.25 -21.41 -28.39 -35.08 -42.20 -49.72
2 -1.00 -5.22 -10.06 -16.63 -23.41 -30.39 -37.08 -44.20 -51.72
1 0.00 -5.22 -12.06 -18.63 -25.41 -32.39 -39.08 -46.20 -53.72

Gain - -13.45

Figure 6
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Note that the states relative value grows more negative with increasing

queue depth as the costs for packet storage are certain to be higher.

The work above describes a model of line opening and closing

operation within a computer communication network and illustrates the

solution of optimal policies for line switching. The optimization is

carried out under the assumption of exponential packet arrival and

service. The assumption that packet service is exponential on each line

is fairly realistic since, in a global sense it merely states that the

packet service rate on each line is independent of the state (queue

length and number of lines open). However, the assumption of an

exponential arrival rate of messages is far more questionable since the

intent of the control algorithm is to dynamically vary the number of

lines in an environment of changing traffic load.

The algorithm which has been developed for an exponential arrival

process could be directly applied to a non-exponential arrival process

producing a reasonably good heuristic algorithm. However, there are a

number of extensions to other more sophisticated heuristic approaches.

If we assume that the the arrival process is approximately exponential,

but the arrival rate is slowly varying in time, a superior approach

would be to estimate the current arrival rate, and select a strategy

compatible with the current arrival rate estimate.

The first part of this procedure is to determine the optimal policy

over a wide range of arrival rates. This is done by statically

resolving the problem for exponential arrivals over a wide range of
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arrival rate parameter X and determining specific ranges for X where a

particular policy is optimal or near optimal assuming an exponential

process at the given rate. From this, the continum of the arrival rate

parameter can be broken into ranges where a specific policy is

preferred. This entire operation is performed statically at design time

and is thus computationally feasible.

The second part of the procedure is to dynamically approximate the

instantaneous arrival rate of the running network in order to select the

most suitable policy from the tables produced above. The specific

approach here depends strongly on the nature of the non-exponential

arrival process, but a simple strategy will be described. If the source

node breaks up time into fixed sized intervals and measures the number

of arrivals within each interval, this sequence of interval measures can

be used as a statistic from wich one can derive an approximate arrival

rate. For example, the rate estimator could, at each iteration, compute

a current rate estimate as a weighted average of the old rate estimate

and the current interval measure. This would geometrically decrease the

significance of old interval measures and allow the construction of a

simple rate estimator requiring very little computer time and memory

space. The rate estimate could then be used to select the appropriate

policy decision table over next time interval. More exotic schemes

could be discussed but mean very little without a more careful

characterization of the true nature of the arrival process.

I
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